Molecular Biology, Pathobiology, and Genetics Retinoblastoma Family Proteins Have Distinct Functions in Pulmonary Epithelial Cells In vivo Critical for Suppressing Cell Growth and Tumorigenesis
نویسندگان
چکیده
Lung cancer is the leading cause of cancer deaths, accounting for more deaths than breast, colon, and prostate cancer combined. The retinoblastoma (Rb)/p16 tumor suppressive pathway is deregulated in most cancers. Loss of p16 occurs more frequently than Rb loss, suggesting that p16 suppresses cancer by regulating Rb as well as the related proteins p107 and p130. However, direct evidence demonstrating that p130 or p107 cooperate with Rb to suppress epithelial cancers associated with p16 loss is currently lacking. Moreover, the roles of p130 and p107 in lung cancer are not clear. In the present studies, Rb ablation was targeted to the lung epithelium in wild-type, p107, or p130 null mice to determine unique and overlapping Rb family functions critical in tumor suppression. Rb ablation during development resulted in marked epithelial abnormalities despite p107 upregulation. In contrast, p130 and p107 were not required during development but had distinct functions in the Rb-deficient epithelium: p107 was required to suppress proliferation, whereas a novel proapoptotic function was identified for p130. Adult Rb-ablated lungs lacked the epithelial phenotype seen at birth and showed compensatory p107 upregulation and p16 induction in epithelial cell lineages that share phenotypic characteristics with human non–small cell lung cancers (NSCLC) that frequently show p16 loss. Importantly, Rb/ p107-deficient, but not Rb/p130-deficient, lungs developed tumors resembling NSCLC. Taken together, these studies identify distinct Rb family functions critical in controlling epithelial cell growth, and provide direct evidence that p107 cooperates with Rb to protect against a common adult cancer. [Cancer Res 2009;69(22):8733–41]
منابع مشابه
Retinoblastoma family proteins have distinct functions in pulmonary epithelial cells in vivo critical for suppressing cell growth and tumorigenesis.
Lung cancer is the leading cause of cancer deaths, accounting for more deaths than breast, colon, and prostate cancer combined. The retinoblastoma (Rb)/p16 tumor suppressive pathway is deregulated in most cancers. Loss of p16 occurs more frequently than Rb loss, suggesting that p16 suppresses cancer by regulating Rb as well as the related proteins p107 and p130. However, direct evidence demonst...
متن کاملSupernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo
Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...
متن کاملSupernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo
Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...
متن کاملA novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system
Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...
متن کاملMolecular Signaling in Tumorigenesis of Gastric Cancer
Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens...
متن کامل